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Abstract
A nonperturbative procedure for solving the time-dependent Schrödinger
equation, called the multi-projection approach or phase dynamics of quantum
mechanics, is derived and illustrated. With the help of this new procedure,
time-dependent quantum systems become generally solvable (if corresponding
stationary systems are solvable) and the phase character of quantum mechanics
reveals itself very clearly.

PACS number: 03.65−w

1. Introduction

Solutions of the time-dependent Schrödinger equation have been of considerable interest since
quantum mechanics was established. Driven by the need to solve theoretical and practical
problems throughout physical fields, such as atomic physics, condensed matter physics and
laser–matter interaction physics, perturbative and nonperturbative methods were proposed and
developed.

As a relatively essential and somewhat perplexing issue, Dirac’s perturbation theory [1],
being one of the most successful methods in dealing with time-dependent quantum systems,
caused seemingly unnecessary concerns. Discussions and suggestions about its validity kept
on appearing for several decades. Kobe examined the gauge issue of the formalism [2].
Forney et al proposed a special gauge, called the preferential gauge, to eliminate the gauge
uncertainty of related calculations [3–5]. Mercouris et al stated that in addition to using the
preferential gauge, appropriate phase factors should, sometimes, be introduced in order to
make coefficients of wavefunction expansion represent the true transition probabilities [6].
The author of this paper studied the classical version and quantum version of the perturbation
theory and also met with nontrivial problems [7, 8].

A nonperturbative procedure for solving the time-dependent Schrödinger equation, called
the multi-projection approach or phase dynamics of quantum mechanics, will be derived and
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illustrated in this paper. The method is not truly new in the sense that the principles employed
are quite elementary and have been elaborated in many textbooks. The objective of this paper
is to illustrate that these principles are indeed workable in terms of solving the time-dependent
Schrödinger equation and to show that the evolution of a quantum system can be characterized
almost entirely by phase dynamics.

The structure of this paper is as follows. Section 2 introduces the new approach, which
is based on the assumption that the time-dependent Hamiltonian can be approximated by
its stepwise time-varying counterparts. The obtained formalism turns out to bear the phase
character of quantum mechanics manifestly. In section 3, we use the proposed approach to
deal with several simple cases and the effectiveness of the proposed approach is demonstrated
to a large extent. Section 4 rederives the Dirac perturbation theory and answers several related
questions. Section 5 concludes the paper.

2. The multi-projection approach

Let us directly enter our major subject: to determine a wavefunction �(t) on the premise that
the initial wavefunction �(t0) and the time-dependent Hamiltonian H(t) are explicitly given.

According to the basic formalism of quantum mechanics, we can formally construct a
unitary operator to obtain the dynamical wavefunction �(t) from the initial wavefunction
�(t0), namely, we have

�(t) = exp

(
− i

h̄

∫ t

t0

H(τ) dτ

)
�(t0). (1)

This formula, albeit listed as one of the four axioms of quantum mechanics in some textbooks
[9], was not widely appreciated, whereas its time-ordering perturbative variant, leading finally
to the famous S-matrix, found many applications and was highly regarded. This is probably
due to the fact that Hamiltonians of a system at different times are not generally commutable
and the implication of the Hamiltonian integral in (1) is rather ambiguous.

To bypass the problem related to the noncommutability of the Hamiltonian and to make
formula (1) conceptually and mathematically explicable (while invoking no perturbative
procedure), we first slice the entire time span from t0 to t into N intervals as

�t1 = t1 − t0 �t2 = t2 − t1, . . . �tN = t − tN−1 (2)

where �t1,�t2, . . . ,�tN are equal to each other or otherwise. The formal solution (1) now
becomes

�(t) = exp

(
− i

h̄

∫ t

tN−1

H(τ) dτ

)
· · · exp

(
− i

h̄

∫ t1

t0

H(τ) dτ

)
�(t0) (3)

or, in terms of the intermediate quantum states,

�(tj ) = exp

(
− i

h̄

∫ tj

tj−1

H(τ) dτ

)
�(tj−1) (j = 1, 2, . . .). (4)

We then explore the possibility of replacing the Hamiltonian H(t) by its stepwise time-
varying approximation Ĥ (t), as shown in figure 1. Without losing generality, consider a
charged particle in an electromagnetic field, whose Hamiltonian reads

H(t) = 1

2µ

(
p − Q

c
A

)2

+ � (5)

where � and A are the time-dependent scalar and vector potentials, respectively. If � �= 0
and A ≡ 0, the replacement of H(t) with Ĥ (t) is justified by the observation that the two
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H(t)

t

Figure 1. A typical time-dependent Hamiltonian and its stepwise time-varying counterpart.

Hamiltonians represent roughly the same physical system. For the case in which both � and
A are nonzero, the situation becomes slightly subtle. As is well-known, the vector potential
A can be separated into two parts: the longitudinal field Al and the transverse field At .
For a reason that will be made clear in the next paragraph, we accept the gauge in that only
the transverse vector potential At and the scalar potential � are nonzero. The gauge choice
should be allowable in view of the fact that a certain gauge transformation can always make
the longitudinal vector field vanish.

The reason why this formulation discriminates against longitudinal vector fields manifests
itself in the following consideration. Suppose that an atom is subject to an external electric
field E(t) and the true dynamical wavefunction under the gauge choice � �= 0 and Al = 0
has been found to be �(t, r). Then, it is well known that the function

eif (t,r)�(t, r) (6)
where f (t, r) is an arbitrary function of t and r, is also the system’s wavefunction provided
that the gauge in question is allowed to be arbitrary. By noting that a phase factor of the form
eif (t,r) can be a nonuniformly continuous function and there are mathematical complications
in dealing with nonuniformly continuous function [10, 11], we are convinced that the gauge
arbitrariness related to (6) should be excluded. For this to be seen more intuitively, consider
simple functions such as eixt , which oscillates violently as x → ∞, and great difficulty will
arise if we try to differentiate, integrate or expand it.

Under the understanding indicated above, we define the stepwise varying Hamiltonian
Ĥ (t) as

Ĥ j ≡ 1

�tj

∫ tj

tj−1

H(t) dt (for tj−1 < t < tj ) (7)

or, in a much simpler way, Ĥ j ≡ H(t̂j ) in that t̂j = (tj−1 + tj )/2. Now, during each of the
time intervals expressed by (2), the newly defined Hamiltonian Ĥ j is independent of time and
the typical intermediate state in (4) becomes

�(tj ) ≈ e− i
h̄
Ĥ j�tj �(tj−1) (8)



6592 C Y Chen

which implies that formula (1) makes sense in the form
�(t) = lim

N→∞
e− i

h̄
ĤN �tN · · · e− i

h̄
Ĥ 2�t2 e− i

h̄
Ĥ 1�t1�(t0). (9)

For the Hilbert space related to Ĥ j (each Ĥ j defines a Hilbert space and there are N
Hilbert spaces), we have

Ĥ j�
j
n (r) = Ej

n�
j
n(r) (10)

where E
j
n and �

j
n are the nth eigenenergy and nth normalized eigenfunction during

tj < t < tj−1. After the wavefunction �(tj−1) is known, the wavefunction �(tj ) can be
expressed by

�(tj ) =
∑

Cj
n e−iEj

n�tj /h̄�j
n(r) (11)

where C
j
n is determined by a projection

Cj
n =

∫
�(tj−1)W

j∗
n (r) dr. (12)

It has been assumed, for simplicity, that the system has discrete eigenstates only. (If this is not
the case, we may employ the box normalization and get a similar formulation.) In the Dirac
notation, equations (11) and (12) become

|�(tj)〉 =
∑

n

e−iωj
n�tj |tj , n〉〈tj , n|�(tj−1)〉 (13)

where ω
j
n = E

j
n

/
h̄. Equation (13) shows that for a short time interval a dynamical system and

its corresponding stationary system evolve in almost the same way. If the initial wavefunction
�(tj−1) is expanded in terms of the eigenfunctions during �tj−1

|�(tj−1)〉 =
∑

l

Cl |tj−1, l〉 (14)

equation (13) can be rewritten as

|�(tj)〉 =
∑

n

Cn|tj , n〉 with Cn = e−iωj
n�tj

∑
l

Cl〈tj , n|tj−1, l〉. (15)

Equations (14) and (15) are particularly useful for determining the wavefunction step by step
in numerical work. As for the final wavefunction, we obtain

|�(t)〉 =
∑

k,...,l,n

e−i�k,...,l,n |tN , k〉〈tN , k| · · · |t2, l〉〈t2, l|t1, n〉〈t1, n|�(t0)〉 (16)

where

exp(−i�k,...,l,n) = exp
[−i

(
ωN

k �tN + · · · + ω2
l �t2 + ω1

n�t1
)]

. (17)

Expressions (16) and (17) are directly explicable in the sense that the multiprojection
component |tN , k〉 · · · 〈t2, l|t1, n〉〈t1, n|�(t0)〉, as a part of the initial wavefunction, indeed
‘passes through’ the energy states labelled n, l, . . . , k in the defined time-division sequence
and should ‘naturally’ get the phase factor (17). Noting

∑
n |tj , n〉〈tj , n| ≡ 1, we find another

interesting and important fact that if all phase factors of the form e−i� disappeared from (16),
the wavefunction would not change at all.

In a real calculation, the major approximation of this method is that the real Hamiltonian
is replaced by its stepwise time-varying counterparts. This can be made more plausible by
comparing this approach with the influential path-integral approach [12, 13]. In doing that,
the following similarities between the two can be observed rather directly. (i) As far as the
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numerical computation is concerned, both approaches have to invoke their discrete forms. (ii)
In terms of their finite discrete forms, both approaches are approximate, but nonperturbative,
theories. (iii) Both approaches assume that as the stepwise time-varying approximation of the
Hamiltonian, or that of the corresponding Lagrangian, approaches the real one, convergent
and correct results will be obtained. (iv) In both approaches, taking on the zero-Al gauge is
actually necessary.

In this formalism, the system’s energy within any specific time interval can be calculated
with the help of the intermediate Hamiltonian and the intermediate wavefunction. In the sense
of taking the limit, the result represents the true dynamical energy of the system.

Before concluding this section, it seems in order to point out that the proposed approach
offers a different view on quantum dynamics. The Dirac perturbation theory leads us to imagine
how a nonstationary system makes a transition from one eigenstate to another. Whereas this
theory states that the wavefunction of a nonstationary system experiences no other change than
that each of the multiprojection components acquires its own phase factor. (For a stationary
system, the same thing takes place except that the involved projection is a single-step one.) To
be consistent with the spirit of enlightening discussions about Berry’s phase [14], the obtained
formalism may therefore be called the phase dynamics of quantum mechanics.

3. Applications

The discussion in the last section has shown that the key tasks in this approach are (i) to find,
in a numerical or analytical way, eigenfunctions for each of the Hilbert spaces associated with
intermediate Hamiltonians; (ii) to project the wavefunction from one Hilbert space onto the
next Hilbert space and (iii) to multiply each of projection components by an appropriate phase
factor. The following examples illustrate that for many realistic problems the work that needs
to be done is less complicated and less laborious than it appears to be. (There have been
worries about treating too many Hilbert spaces.)

Firstly, we study an artificial case which can be solved exactly by the method proposed.
Consider a harmonic oscillator disturbed for a time 0 < t < T and having the Hamiltonian

H(t) = p2

2
+

S(t)

2
x2 (18)

with S(t) being a stepwise function

S(t) =



1 (t � 0)

ξ (0 < t < T )

1 (t � T )

(19)

where ξ �= 1 stands for a positive constant. For convenience of discussion, we denote the nth
eigenfunction of the oscillator at any time t by |n, S(t)〉 and the initial wavefunction of the
system by |0〉. From (14) and (15), the system’s wavefunction during 0 < t < T takes the
form

�(t) =
∑

n

e−iEn,ξ t |n, ξ〉〈n, ξ |0〉 (20)

where En,ξ = ωξ (n + 1/2) with ωξ = √
ξ (h̄ = 1). After t = T ,

�(t) =
∑
n,m

e−iEn,ξ T −iEm,1(t−T )|m, 1〉〈m, 1|n, ξ〉〈n, ξ |0〉. (21)

An interesting fact observed is that if T = 4π/ωξ , the wavefunction after t = T expressed by
(21) becomes, due to e−iEn,ξ T = 1 and

∑
n |n, ξ〉〈n, ξ | = 1,

�(t) =
∑
m

e−iEm,1(t−T )|m, 1〉〈m, 1|0〉 (22)
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as if the system has been completely frozen during 0 < t < T , which is somewhat similar to
the phenomena predicted by the quantum Zeno effect [15, 16]. On the other hand, the phase
character involved can manifest itself more vividly if we assume that the system is initially in
the ground state and let T still be equal to 4π/ωξ . Such a system will, after t = T , return to
the same ground eigenstate, and the only effect of the disturbance is to produce an additional
phase factor exp(iE0,1T ) = exp(i2π/

√
ξ). (Note that if the disturbance were not applied at

all, namely ξ = 1 in the process, the wavefunction would otherwise acquire a phase factor
exp(−iE0,1T ) during the same time 0 < t < T .)

Now, we turn our attention to the anharmonic quantum oscillator that is of a certain
significance in studying the early inflationary universe. Due to the complexity of the subject,
various related models and considerations appeared in the literature, which are much beyond
the scope of this paper. The discussion here, brief and quite primitive in many senses, is almost
entirely motivated to show that whenever the Hamiltonian in a consideration is time-dependent,
there is a possibility of applying the proposed method.

According to the ‘slow rollover’ scenario of the early universe [17–20], the phase transition
can be thought of as one where at very high temperature the potential has a minimum at φ = 0,
which becomes unstable as the temperature decreases, with the stable minima moving to a
new larger value of φ = ±σ . In the one-dimensional quantum model to simulate the process,
the wavefunction initially takes the form of a Gaussian, which is maintained by a harmonic
oscillator potential (as explicitly indicated in [18]) and then the wavefunction evolves under a
potential that becomes a symmetry-breaking one with minima moving from the central point
to new places x = ±a. In this paper, we consider a particle whose Hamiltonian takes the form
(h̄ = 1)

H = −1

2

d2

dx2
+ V (x) with V (x) = λ0 + λ2x

2 + λ4x
4 (23)

where the values of λi vary with time in such a way that V (x) makes the following
transformation:

1

2
x2 → 0.01

24
(x2 − 52)2. (24)

Before dealing with this time-dependent problem fully, let us treat the corresponding
stationary systems first. As an illustrative case, it is useful to examine the stationary ‘oscillator’
whose potential is 0.01(x2 − 52)2/24. To deal with this system numerically, we replace
the potential with a new one having the step shape shown in figure 2, where every spatial
step (�x)i = xi − xi−1 takes the unit value 1 and the average potential within (�x)i is
Ui = 0.01

(
x̄2

i − 52
)2/

24 with x̄i = (xi−1 + xi)/2. After adopting these treatments, it becomes
quite easy to get the eigenenergies and eigenfunctions of the system in a semi-analytical way.
When the nth eigenenergy εn is larger than or equal to the local potential Ui , the analytical
form of the wavefunction within the spatial segment �xi takes the form

�i(x) = A cos(kix) + B sin(kix) (25)

where ki = √|εn − Ui | and, similarly, when εn is smaller than Ui ,

�i(x) = A exp(kix) + B exp(−kix). (26)

The numerical value of εn in (25) and (26) can be determined by the wavefunction continuity
between different (�x)i and by letting the wavefunction vanish for large x. A simple code
written for that purpose yields the energies of eigenstates with even parity as follows:

0.128 978 0.309 293 0.571 582 0.941 175 1.376 138

1.862 994 2.393 802 2.963 328 3.565 216 4.208 901.
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U(x)

2.5

2.0

1.5

1.0

0.5

x

−10 −5 0 5 10

Figure 2. The potential of the anharmonic oscillator and its numerically solvable approximation.

Ψ0(x) Ψ2(x) Ψ4(x)

x

− 4− 8 0 4 8 − 4− 8 0 4 8 − 4− 8 0 4 8

x x

Figure 3. The three lowest even-parity eigenstates of the anharmonic oscillator.

The corresponding eigenfunctions take rather interesting forms. In figure 3, the ground
eigenfunction and the two lowest excited eigenfunctions are depicted. Note that for this
partially upside-down oscillator, the ground eigenfunction has two maxima.

We now let the parameters λi in (23) vary within the time span �t = 15. Our numerical
calculations show that the final wavefunction is rather insensitive to the concrete pattern of
how these parameters vary as long as the potential V (x, t) completes the transformation
expressed by (24) for a sufficiently long time. (Here, �t = 15 can be considered long
enough.) Nonetheless, our typical numerical work was done by setting the parameters in the
following way. In the first time stage 0 < t < 5, λ2 and λ4 vary linearly so that the potential
is transformed from x2/2 to 0.01x4/24; in the second time stage 5 < t < 15, λ0 and λ2 vary
linearly so that the potential is transformed from 0.01x4/24 to 0.01(x2 − 52)2/24. The initial
wavefunction takes the Gaussian

�(0) =
(

1

π

)1/4

exp

(
−x2

2

)
(27)
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|Ψ(x)|2

0.45

0.30

0.15

x

− 8 − 4 0 4 8

Figure 4. The probability density of the quantum system at different times. The thin dotted and
solid lines represent the wavefunctions at t = 0 and t = 5, respectively; and the thick dotted and
solid lines the ones at t = 10 and t = 15.

Table 1. The time behaviour of the wavefunction in the computational work.

t C0 C2
∑

En|Cn|2

� 0 1.000 000 + 0.000 000 i 0.000 000 + 0.000 000 i 0.539 847
0+ 0.999 959 + 0.000 000 i 0.009 051 + 0.000 000 i 0.525 441
τ0+ 0.965 423 − 0.259 403 i 0.015 378 − 0.013 603 i 0.496 332
2τ0+ 0.872 307 − 0.487 367 i 0.474 626 − 0.036 187 i 0.466 001
· · · · · · · · · · · ·
30τ0+ −0.265 492 − 0.772 048 i −0.498 776 + 0.287 855 i 0.190 124

which is the ground state of the potential x2/2. Under these conditions, the wavefunction is
found to evolve as in table 1,
in which the entire time has been sliced into 30 intervals and Ci are given in terms of
intermediate Hilbert space. For lack of space, C4, C6, . . . , C18 and

∑9
i=0 |C2i|2 ≈ 1 have not

been listed in the table. Figure 4 shows that the probability density of the system ‘rolls’ down
to its final minima gradually and the rolldown takes place mainly during the time 10 < t < 15.

Another observation has been made in the computation: if the entire time span is shortened
by half, while leaving the potential to complete the transformation expressed by (24), the final
probability density will not have enough time to ‘roll down’ from the central point.

4. Rederivation of the Dirac perturbation theory

In this section, we rederive the Dirac perturbation theory. The purpose of doing so is twofold.
One is to illustrate the analytical ability of this approach, and the other is to further answer
questions concerning the Dirac perturbation theory.

To obtain an analytical formalism, which is presumably the same as the standard one, we
accept the following assumptions. (i) The quantum system of interest is initially in the nth
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V (t) ≡ H(t) − H0

t

Figure 5. A perturbation and its pulse-like approximation.

eigenstate of H0, the perturbation applies at the initial time t = 0 and vanishes completely at
the final time t = T . (ii) The perturbation can be approximated by a series of pulses whose
values rise sharply and then vanish sharply and completely, as illustrated in figure 5. That is,
we take on the conception that the pulse-like perturbation gives the same physical effects as the
real perturbation does. (iii) The leading term of the wavefunction, namely, the value and the
phase factor of the nth eigenstate, will not be seriously disturbed. (iv) The other nonleading
terms, produced by pulses of the disturbance, will not be seriously disturbed by pulses coming
later on. With these assumptions accepted, the derivation here, which can be regarded as an
application of the ‘sudden approximation’ due to Pauli [21, 22], holds.

Consider one specific pulse of the perturbation that exists between t ′ and t ′ + �t ′. The
leading term of the wavefunction at t = t ′ is e−iωnt

′ |n〉, at t = T it becomes, under the
disturbance of the pulse,

e−iωnt
′ |n〉 →

∑
k

e−iωnt
′
e−iωk�t ′ 〈k|n〉|k〉

→
∑
k,m

e−iωnt
′
e−iωk�t ′ e−iωm(T −t ′−�t ′)〈m|k〉〈k|n〉|m〉 (28)

where |m〉 stand for eigenfunctions defined by the Hamiltonian H0 and |k〉 eigenfunctions
defined by the intermediate Hamiltonian within the pulse. Note that in (28), before t ′ and after
t ′ + �t ′ all the phase factors evolve regularly as if the other pulses do not exist. (This is a
conditional assumption as has been indicated.) Since �t ′ is short, the following approximation
is acceptable: ∑

k

〈m|k〉 e−i(ωk−ωm)�t ′ 〈k|n〉 ≈ 〈m|1 − i

h̄
[H(t ′) − H0]�t ′|n〉 (29)

thus, the mth coefficient of the wavefunction at t = T is

bm = − i

h̄
�t ′〈m|V |n〉 e−i(ωn−ωm)t ′ e−iωmT (m �= n) (30)
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where V ≡ H(t ′)−H0. Taking contributions from all pulses into account, we obtain at t = T

bm = − i

h̄
e−iωmT

∫ T

0
Vmn e−i(ωn−ωm)t ′ dt ′ (m �= n). (31)

Except for the phase factor exp(−iωmT ), the above formula is consistent with the well-known
one.

The present derivation, called the sudden-approximation(SA) derivation, is quite different
from the textbook derivation. On the ‘positive side’, it confirms the validity of (31) without
differentiating or integrating the wavefunction expansion term by term. On the ‘negative
side’, it reveals several factors restricting the use of the perturbation theory. To be more
specific about such factors, the following mention should be made. (i) If the final Hamiltonian
H(t > T ) is not the same as the initial Hamiltonian H(t0), this formalism will mistakenly
assume that there are ever-lasting ‘perturbation pulses’ and yield misleading predictions. (ii)
If the phase factors of the wavefunction, including all those related to relevant eigenstates, are
severely disturbed, the formalism will not be accurate. (iii) The formulation holds only under
the gauge in that no longitudinal vector field exists, which, together with H(t > T ) = H(t0),
can be interpreted as the preferential gauge [3–5].

Before leaving this subject, we wish to comment on the common belief that a dynamical
wavefunction can formally be represented by a series of the form∑

n

Cn(t) e−iωnt�n(r) or
∑

n

Cn(t)�n(r) (32)

in which ωn and �n(r) are, by convention, related to the initial Hamiltonian.
In our view, expansion (32), though holding its significance at any fixed instant, should not

be utilized to obtain solutions for the time-dependent Schrödinger equation. Mathematically
speaking, (32) is not a uniformly convergent series and it is not legitimate to differentiate or
integrate such series term by term [8]. Physically speaking, after a dynamical system leaves its
initial state, the eigenfunctions and eigenfrequencies associated with the initial Hamiltonian
become out of date. If we still use them at later times, some coefficients of the series have to
adjust themselves violently, so violently that they cannot be determined in a practical way.

The above discussion implies, in a different perspective, that formulating successive, but
discrete, states of a quantum system is a rather good alternative. Interestingly enough, the
path-integral approach and Berry’s phase studies have taken approaches of this type for a long
time [23].

5. Summary

A nonperturbative procedure, called the multiprojection approach or phase dynamics of
quantum mechanics,has been proposed,which in a way unifies treatments of different quantum
systems: stationary and nonstationary, weakly-disturbed and strongly-disturbed. Considering
that knowledge about stationary systems has long been accumulated and many systems with
strong fields need to be studied, such a unification seems desirable.

The similarities between the multi-projection approach and the path-integral approach
also suggest that the proposed method may find applications in a variety of quantum fields.

It has been shown that a system’s dynamics can be described by the process in which
each multiprojection component of the wavefunction acquires its own phase factor. This
‘state transition’ picture is quite different from that of the standard theory. The standard
picture, usually associated with the initial Hilbert space and paying much less attention to the
disturbance of phase factors, is useful only if several conditions are simultaneously satisfied,
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which in general include: the final Hamiltonian is the same as the initial Hamiltonian, the
perturbation is relatively small and the action time of the perturbation is relatively short.
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